Invertibility

Impulse Response | DT Convolution | CT Convolution | Properties of LTI Systems |

Memoryless | Causality | Stability | Invertibility |

### Definition

Suppose $h[n]$ or $h(t)$ is the impulse response.

If an LTI System is invertible it has an LTI Inverse.

The LTI System with impulse response $h[n]$ or $h(t)$ is invertible if $\exists$ an $h_1[n]$ or $h_1(t)$ such that:

\begin{align} h[n]*h_1[n]=\delta[n] \end{align}

(2)
\begin{align} h(t)*h_1(t)=\delta(t) \end{align}

### Examples

- $h(t)=\delta(t-t_0)$

$y(t)=x(t)*\delta(t-t_0)=x(t-t_0)$

\begin{align} \delta(t-t_0)*\delta(t+t_0)=\delta(t) \nonumber \end{align}

(4)
\begin{align} \delta(t-t_0)*\delta(t)=\delta(t-t_0) \nonumber \end{align}

(5)
\begin{align} \delta(t-t_0)*\delta(t+t_0)=\delta(t+t_0-t_0)=\delta(t) \nonumber \end{align}

_

- $h[n]=\big(\frac{1}{2}\big)^n u[n]$

Is there an $h_1[n]$ such that $h[n]*h_1[n]=\delta[n]$?

$h_{eq}[2]=1\frac{1}{4}-\frac{1}{2}\frac{1}{2}+h_1[2]1=0 \Rightarrow h_1[2]=0$

$h_1[n]=\delta[n]-\frac{1}{2}\delta[n-1]$ is the inverse of $h[n]=\big(\frac{1}{2}\big)^n u[n]$

page revision: 2, last edited: 26 Aug 2016 15:43